

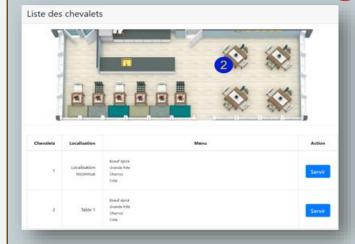
Système didactique Chevalet de localisation par RFID

Mise en situation en restauration rapide

Du système réel..

Descriptif du système industriel Chevalet RFID

En restauration rapide, un système de localisation, basé sur une solution **RFID**, permet de **géolocaliser un client** pour qu'un serveur puisse lui apporter la commande à la bonne table.


Pour ces restaurants, les avantages du système industriel permettent un gain de temps avec un service à table rapide et sans erreurs, le client pouvant s'attabler à l'endroit souhaité.

Le traitement des commandes est simplifié et augmente la productivité et la rentabilité. Le **phasage** est le suivant :

Le client commande à la borne libreservice, prend et saisit le numéro d'un chevalet.

Un employé prépare la commande. L'employé(e) regarde sur le plan de salle affiché à l'écran, où se trouve le client.

Le client s'installe dans la salle du restaurant et pose le chevalet sur sa table.

Dès que la commande est préparée, l'employé(e) apporte la commande au client et reprend le chevalet.

DESCRIPTIF DE L'OST SYSTÈME DIDACTIQUE INSTRUMENTÉ

L'OST (Objet et Système Technique), système didactique chevalet RFID permet la mise en oeuvre totale du process allant de la commande d'un menu à sa livraison sur la table client géolocalisée. Il reprend le même phasage décrit précédemment pour la solution industrielle. Les composants du système Chevalet RFID sont une adaptation didactique du système réel et assurent les mêmes fonctions techniques.

Les éléments en vert sont ajoutés pour une exploitation pédagogique.

Batterie

FONCTIONNEMENT DU SYSTÈME DIDACTIQUE EN MODE AUTONOME

- Le lecteur scanne en permanence les chevalets à proximité et envoie leur identifiant au serveur informatique Raspberry Pi.
- Le lecteur est autonome mais peut également interagir avec l'ordinateur d'exploitation pour réaliser des opérations spécifiques. Il peut même être reprogrammé ponctuellement (scripts micropython fournis), de façon non permanente : le programme par défaut est exécuté à chaque démarrage et ne peut pas être écrasé.
- Le serveur informatique basé sur une carte Raspberry Pi exécute un serveur Web «Restaurant» composé d'une partie «Utilisateur», permettant de réaliser un processus de passage de commande et d'une partie «Administration», permettant de gérer les commandes et de localiser les chevalets.
- Les terminaux ne sont pas fournis

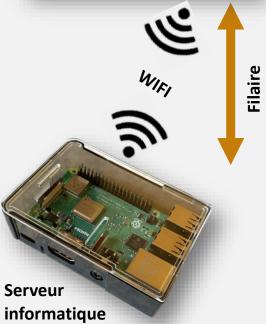
Serveur informatique

Raspberry PI

ORGANISATION POUR LA RÉALISATION DES TP

Le système principal **Chevalet RFID** est composé de 2 sous systèmes permettant la mise en œuvre séparée de la réalisation des TP associés. Il est complété par un terminal de commande et un terminal de service pour la mise en oeuvre totale du process allant de la commande d'un plat à sa livraison sur table.

Système principal


Sous système 1

Liaisons Filaire et Wifi Protocole Client Serveur, Trames, Encapsulation TCPIP

Sous système 2

Liaisons Filaire et UHF Protocole et trames RFID et Com Série

Lecteur /programmateur RFID

TP1 CIEL	MISE EN ŒUVRE RESEAU INFORMATQUE POUR LOCALISATION RFID
Pôle d'activité	Bloc 2: Mise en œuvre de de réseaux informatiques
Ressources	Système complet, dossier technique, phasage des opérations

R2:Installation et qualification

T1: Prise en compte de la demande du client

T4:Réalisation des opérations avec intégration des contraintes client et contrôle.

C06: Valider la conformité d'une installation

A partir de la notice de mise en œuvre, installer le réseau informatique: Identifier les éléments fournis et établir les connexions.

R3: Exploitation et maintien en condition opérationnelle

T1: Réalisation d'un diagnostic de premier niveau

T2: Configuration matérielle et logicielle des équipements

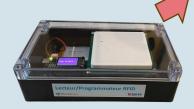
C09: Installer les éléments d'un système électronique ou informatique

C10: Exploiter un réseau informatique

A partir du système opérationnel, valider les phases de A à E comme indiquées dans la procédure, depuis la prise de commande jusqu'à l'affichage sur le terminal de service de la table choisie (identifié par le chevalet) par le client du restaurant

Terminal de commande Application HTML pour la saisie de commande et appairage d'un chevalet

(Tablette ou ordinateur non fourni)



Saisie de la Cde et du N° du chevalet qui possède une étiquette RFID numérotée.

Connexion Wifi avec le serveur (envoi du N° de Cde et du N° du Chevalet) Pose du chevalet sur la table ou se trouve le lecteur

Lecture du N° du chevalet par le lecteur en connexion RFID

Lecteur/Programmateur RFID, Client dans l'architecture Client/Serveur, connexion WIFI Serveur informatique dans l'architecture Client/Serveur, connexion WIFI

Envoi au serveur du N° du chevalet et du N° de table en <u>connexion Wifi</u>

D

Le serveur reçoit de la part du lecteur le numéro de table et le N° du chevalet, en déduit, le N° de commande et génère pour la tablette, une page graphique HTML contenant le plan et la position du chevalet sur une des tables, connexion Wifi

Terminal de service

Application HTML pour visualiser le plan de salle
(Tablette ou ordinateur non fourni)

Plateau repas apporté à la table du client

TP2 CIEL ORGANISATION MATERIELLE ET LOGICIELLE DU SYSTÈ							
Pôle d'activité	Bloc 2: Mise en œuvre de réseaux informatique						
Ressources	Système complet opérationnel et dossier technique, MyViz						

D2: développement et validation de solutions logicielles

T1 : Modélisation d'une solution logicielle

T2 : Développement, utilisation ou adaptation de composants logiciels

T3: Tests et validation

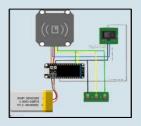
E4: Intégration matérielle et logicielle

T2: Configuration matérielle et logicielle des équipements

CO4:Analyser une structure matérielle et logicielle Infrastructures matérielles et logicielles centralisées, décentralisées ou réparties **N3** SysML (exigences, séquence, blocs, blocs internes) **N2**

Compléter les documents et les diagrammes SysML donnés. Justifier le choix:

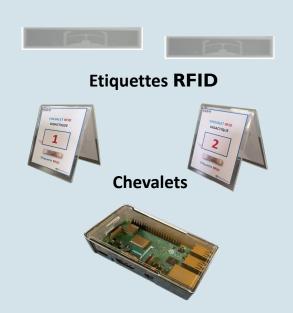
- du matériel,
- des interfaces
- du logiciel et des protocoles de communication



PC d'exploitation

IHM de communication

Microcontrôleur ESP32-S3 TFT Feather



Module RFID

Lecteur programmateur RFID

Serveur informatique Raspberry pi

TP3 CIEL CAPTURER, ANALYSER SIGNAUX							
Pôle d'activité	Bloc 1: Réalisation et maintenance de produits électroniques						
Ressources	Pc-lecteur connectés par liaison série, oscilloscope ou analyseur logique, dossier technique, critères du test et grandeurs à contrôler.						

E2:Tests et essais

T1:Tests et mesures nécessaires à la vérification d'une carte et/ou d'un système électronique communicant

T2: Mise en place d'un environnement de tests

T3: Application d'un protocole de tests et de mesures

C06: Valider la conformité d'une installation

Appareils de mesure N3, Réseaux informatiques: protocoles, équipements et outils usuels: N3 C11:Maintenir un système électronique ou réseau informatique, Caractérisation de signaux non complexes: N2

A partir MyViz, Paramétrer le protocole liaison série entre lecteur et le module RFID A l'aide d'un oscilloscope ou analyseur logique, capturer les trames de commande RFID A partir des exemples de trames capturées ou fournies

- Décoder les données reçues et retrouver le nom du fabricant
- Calculer la vitesse en bit/s et le débit utile

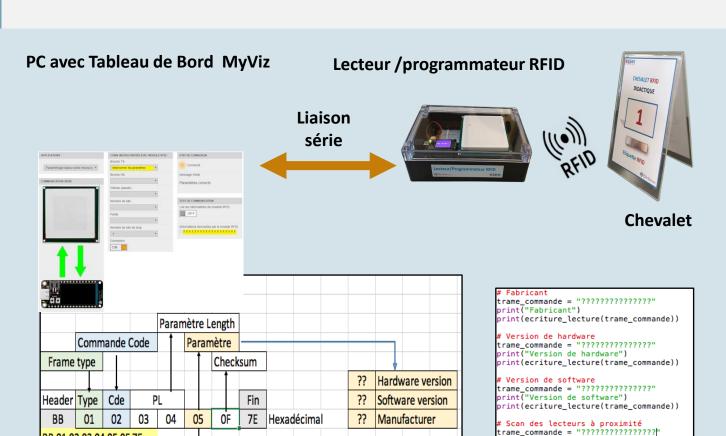
TP4 CIEL	PROTOTYPER ET INTEGRER REQUÊTES RFID (Script Python)
Pôle d'activité	Bloc 3: Valorisation de la donnée et cybersécurité
Ressources	Sous Système avec lecteur et dossier technique, programmes Python

D2:Développement et validation de solutions logicielles

T1 : Modélisation d'une solution logicielle

T2 : Développement, utilisation ou adaptation de composants logiciels

T3: Tests et validation


C08: Coder Principe fondamentaux de programmation N3

C06: Valider la conformité d'une installation structures programmable N2, structures matérielles **N2**

A partir du document M100 Communication Protocol et du tableau de bord MyViz: Paramétrer, tester la communication entre le microcontrôleur et le module RFID.

Lire les informations du module:

- Dans le tableau d'assistance Excel, saisir les arguments de la trame de commande «Get Module Information» pour lire les données du module RFID
- Copier la trame finale dans MyViz (trames brutes) pour tester cette requête
- Convertir la réponse brute en caractères ASCII pour rendre la lecture possible.
- Compléter le programme Python donné assurant l'intégration des requêtes prototypées, l' exécuter et le valider pour lire les informations du module RFID

Prototypage trame RFID

BB 01 02 03 04 05 0F 7E

Intégration

Programme python à commenter, compléter exécuter, valider

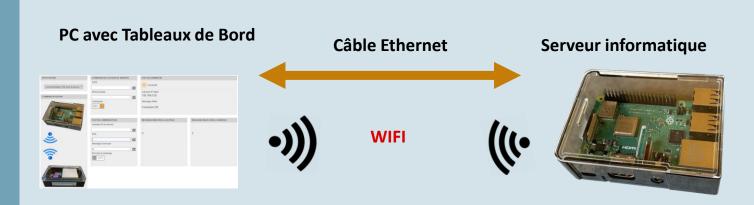
print(ecriture_lecture(trame_commande))

TP5 CIEL	DIALOGUE CLIENT SERVEUR
Pôle d'activité	Bloc 2: Mise en œuvre de réseaux informatique
Ressources	Sous Système Client/Serveur et dossier technique

R3: Exploitation et maintien en position opérationnelle

T2:Configuration matérielle et logicielle des équipements

C06 Valider la conformité d'une installation


Réseaux informatiques: protocoles, équipements et outils usuels: N3, principe modèles en couches :N1

C09: Analyser une structure matérielle et logicielle

Modèles OSI/IP, protocoles IPv4: N3, serveurs et ordinateurs, Architecture réseau: N2

A partir de MyViz, établir connexion WIFI entre PC et serveur HTTP et valider la communication par échange de messages.

- Justifier l'adresse IP du client et le type d'adressage
- Envoyer une requête HTTP au serveur pour lui indiquer la position d'un chevalet et la valeur du RSSI associée. Valider la réponse du serveur
- Analyse trames (données ou capturées): Ethernet, protocole TCPIP, HTTP requêtes du client.

192.168	.100.49	
	192.168.	100.199
	50170 · hu-(00) (00) (00) 0 0 Wi- 04040 I	
52178	52178 → http(80) [SYN] Seq=0 Win=64240 Len=	80
52178	http(80) → 52178 [SYN, ACK] Seq=0 Ack=1 Win=	80
52178	52178 → http(80) [ACK] Seq=1 Ack=1 Win=2626	80
52178	GET /localisation?lecteur_id=1&chevalet_id=1&RS	80
52178	http(80) → 52178 [ACK] Seq=1 Ack=502 Win=64	80
52178		80
52178	52178 → http(80) [ACK] Seq=502 Ack=164 Win=	80
52178	GET /favicon.ico HTTP/1.1	80
52178	HTTP/1.1 200 OK (text/html)	80
52178	52178 → http(80) [ACK] Seq=947 Ack=343 Win=	80
52178	[TCP Keep-Alive] 52178 → http(80) [ACK] Seq=9.	80
52178	[TCP Keep-Alive ACK] http(80) → 52178 [ACK] S	80
	http(80) → 52178 [FIN, ACK] Seq=343 Ack=947	
52178	52178 → http(80) [ACK] Seq=947 Ack=344 Win=	80

Time ^	Source	Destination	Protocol	Length	Port	Mac
- 0.000000	192.168.100.49	192.168.100.199	TCP	66	52178	c8:a3:62:12:d1:23
0.001530	192.168.100.199	192.168.100.49	TCP	66	http	HewlettP_05:08:03
0.001684	192.168.100.49	192.168.100.199	TCP	54	52178	c8:a3:62:12:d1:23
0.004603	192.168.100.49	192.168.100.199	TCP	66	52179	c8:a3:62:12:d1:23
0.005087	192.168.100.49	192.168.100.199	HTTP	555	52178	c8:a3:62:12:d1:23
0.007163	192.168.100.199	192.168.100.49	TCP	66	http	HewlettP_05:08:03
0.007163	192.168.100.199		TCP	60	http	HewlettP_05:08:03
0.007259	192.168.100.49	192.168.100.199	TCP	54	52179	c8:a3:62:12:d1:23
0.037866	192.168.100.199	192.168.100.49	HTTP	217	http	HewlettP_05:08:03
0.087212	192.168.100.49	192.168.100.199	TCP	54	52178	c8:a3:62:12:d1:23
0.266222	192.168.100.49	192.168.100.199	HTTP	499	52178	c8:a3:62:12:d1:23
0.278379	192.168.100.199		HTTP	233	http	HewlettP_05:08:03
0.320375	192.168.100.49	192.168.100.199	TCP	54	52178	c8:a3:62:12:d1:23
45.008091	192.168.100.49	192.168.100.199	TCP	55	52179	c8:a3:62:12:d1:23
45.010414	192.168.100.199	192.168.100.49	TCP	66	http	HewlettP_05:08:03
45.289359	192.168.100.49	192.168.100.199	TCP	55	52178	c8:a3:62:12:d1:23
45.291615	192.168.100.199	192.168.100.49	TCP	66	http	HewlettP_05:08:03
60.005417	192.168.100.199	192.168.100.49	TCP	60	http	HewlettP_05:08:03
60.005467	192.168.100.49	192.168.100.199	TCP	54	52179	c8:a3:62:12:d1:23
75.279706	192.168.100.199	192.168.100.49	TCP	60	http	HewlettP_05:08:03
75.279758	192.168.100.49	192.168.100.199	TCP	54	52178	c8:a3:62:12:d1:23
105.017397	192.168.100.49	192.168.100.199	TCP	55	52179	c8:a3:62:12:d1:23
105.019751	192.168.100.199	192.168.100.49	TCP	60	http	HewlettP_05:08:03

Liste paquets

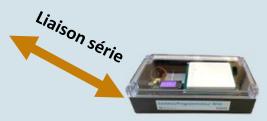
TP6 CIEL	MODIFIER DONNEES DANS ETIQUETTE RFID (numéro chevalet)
Pôle d'activité	Bloc 1: Réalisation et maintenance des produits électroniques
Ressources	Sous-système avec lecteur et dossier technique

E5: Maintenance et réparation des produits électroniques

T4: Mise à jour des équipements

CO4: Analyser une structure matérielle et logicielle, structures programmables **N2**, programmation en langage évolué **N3**

CO8: Coder, Principes fondamentaux de programmation (variables, alternatives, boucles et fonctions)


N3

A partir du TB MyViz, et des tableaux d'assistance Excel (saisie trame, calcul checksum, conversion Hexa/ASCII) et outil calcul CRC 16 bits:

- Créer et tester les 4 trames RFID pour:
 - Faire inventaire des chevalets présents et justifier sur quel critère l'ordre d'affichage de ceux-ci est fait dans la trame de réponse.
 - Sélectionner le chevalet à modifier avec filtrage EPC
 - Ecrire le numéro demandé dans la zone mémoire utilisateur de l'étiquette.
 - Vérifier l'écriture et valider le résultat
- Commenter le programme Python donné assurant l'intégration des requêtes prototypées (1 à
 4) en nommant chaque fonction
- Exécuter le programme

PC avec Tableaux de bord

Lecteur /programmateur RFID

Trame r	éponse	chev	alet 1			Proto	Protocole Control																
						, i	1													PC+	EPC		
header	Type	Cde	Para l	ength	RSSI	Р	C			EPC co	orrespo	ondant	au N°	de vot	re chev	alet (9	6 bits)			CF	₹C	Check	Fin
BB	02	22	00	11	C2	34	00	E2	00	47	0A	81	A0	68	21	07	96	01	0D	98	11	5C	7E
	02	34	00	17	194	52	00	226	00	71	10	129	160	104	33	07	150	01	13	152	17		1372
02 22 00	11 C2	34 00	E2 00 4	47 OA 8	1 AO 6	8 21 0	7 96 01	L OD 98	11 50														

Prototypage Trame RFID

Intégration trames prototypées dans programme Python

Scan des lecteurs à proximité

print("Scan")
tags list = lecteur.inventory()
for tag in tags list:
 print(tag)

TP7 CIEL	EDITER, COMPLETER, COMMENTER ET VALIDER SCRIPTS PYTHON							
Pôle d'activité	Valorisation de la donnée et cybersecurité							
Ressources	Pc et lecteur connectés par liaison série, serveur, script Micropython, logiciel Thonny, dossier technique							

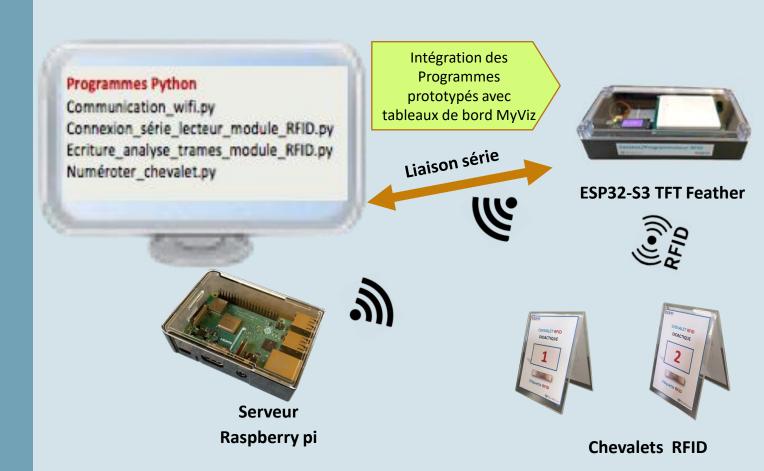
D2 Développement et validation de solutions logicielles

CO8:Coder, Langages de développement, infrastructures matérielles et logicielles N2
Principes fondamentaux de programmation (variables, alternatives, boucles et fonctions) N3

A partir d'un script micro-python partiel « élève », assurant les mêmes fonctionnalités qu'un tableau de bord MyViz correspondant :

A l'aide du logiciel Thonny (ou autre) installé sur PC: Suivre les consignes données, éditer, compléter, commenter le fichier source.

Exécuter et valider les scripts.


Nota: Plusieurs scripts disponibles à choisir par le professeur selon les domaines:

Domaine communication

- Etablir connexion par liaison série: connexion_série _lecteur_moduleRFID.py
- Etablir communication wifi avec le serveur: communication wifi.py
- Requêtes communication client/serveur : requête_brute_seveur_wifi.py

Domaine module RFID

- Ecriture et analyse de trames RFID: écriture analyse trames module RFID
- Lecture et écriture dans la zone mémoire de l'étiquette du chevalet: numéroter.py

TP8 CIEL	DIAGNOSTIQUER PANNE(S) DE COMMUNICATION CORRIGER ET VALIDER LE FONCTIONNEMENT								
Pôle d'activité	Bloc 2: Mise en œuvre de réseaux informatique								
Ressources	 Système installé et configuré avec défaut(s) de paramétrage Sur PC: logiciel Putty et Angry IP Sur Android: Network Scanner; Dossier technique 								

R3 Exploitation et maintien en condition opérationnelle

R5:Mainrtenace des réseaux informatiques

C10: Exploiter un réseau informatique: Ligne de commandes d'équipement N3, système d'exploitation UNIX et Windows N2

C11: Maintenir un système électronique ou réseau informatique: Structures programmables N3

A partir du système comportant des dysfonctionnements de connexion, créés par le professeur à l'aide de programmes exécutables fournis:

- 2 défauts créés dans les fichiers de configuration du serveur Raspberry pi
- 1 défaut créé sur chevalet: impossibilité de détection du chevalet
- 1. Diagnostiquer et justifier les pannes de communication du réseau informatique
- 2. Définir les procédures d'actions correctives.
- 3. Corriger les défauts l'aide des outils logiciels disponibles ou fournis par le professeur, tester et valider le fonctionnement.

