

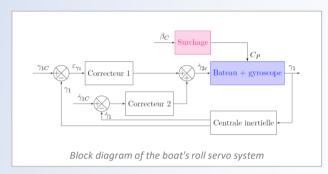
Sciences Industrielles pour l'Ingénieur

Gyroscopic boat stabilizer

Based on a real system for teaching industrial engineering sciences

Stabilisateur gyroscopique de bateau

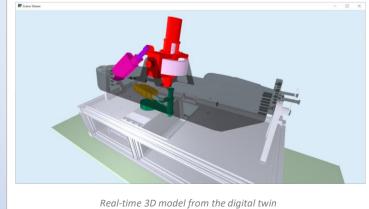
Sciences Industrielles pour l'Ingénieur


The **Gyroscopic boat stabilizer**, inspired by an industrial boat stabilizer, features

SZIDIDAC

- I inertial wheel, speed-controlled (up to 4000 rpm);
- 1 articulated gyroscope support frame, driven by an electric cylinder, with speed control to enable a controlled gyroscopic torque;
- 1 articulated overload, driven by an electric cylinder, to modify the boat's center of gravity and enable a rolling motion.

The **3** actuators are equipped with an encoder, and an inertial unit is mounted on the articulated frame, all of which enable the following program configuration :


- Control (characterization, identification, modeling, correction)
- Geometric/kinematic law
- Static
- Kinetics/Dynamics/Energetics/Power
- Al process

The control software MyViz integrates

- dashboards adapted to each training activity, with only the control values associated with the activity visible;
- an interface for analyzing all measured and calculated signals (over forty) with CSV export, cursors on curves, time curves, XY ...

S2IDIDAC

5 Allée de Faucillon 71700 TOURNUS

- MyViz : Automatic mode dashboard
- a digital twin, 3D model controlled in real time, reflecting the real dynamics of the system. All students can work simultaneously on different computers. This facilitates group activities.

Stabilisateur gyroscopique de bateau

 $\cos(\psi + \psi^*) + X_{i2} = 0$ $(m_2 + m_3)g\sin\gamma_1 + Y_{i2} = 0$ $(+\psi^{*}) - (m_{2} + m_{3})g\cos\gamma_{1}$

69 12

seion S T

 $+Z_{\alpha}=0$

Sciences Industrielles pour l'Ingénieur

The trainer will be delivered with:

- a technical file with detailed geometric, kinematic and dynamic modeling calculations
- a training file with hands-on activities
- a Solidworks volume model that can be used directly for simulations in Meca3D
- Parameterizd kinematic diagrams for easy use/adaptation of training activities

Stabilisateur

52 SZIDIDAC

50 52

0.y.

1 Dáfinitio na du stabilisateu

verique du stabi

SERVICE Stabilisateur gyroscopique de bateau

Sciences Industrielles pour l'Ingénieur

Training activities

Activity 1 : System overview

- Analyze the influence of overload position on boat behavior.
- Analyze the influence of gyroscope orientation and speed on boat behavior.
- Identify the 3 functional chains (boat inclination, flywheel inclination and gyro rotation).

Activity 2 : Geometric analysis

- Identify the structural chain used to position the overload in order to determine the geometric I/O law (overload position as a function of actuator length).
- Identify the structural chain used to position the gyroscope frame in order to determine the geometric I/O law (frame orientation as a function of actuator length).

Activity 3 : CILS performance and modeling

- Propose a behavior model for the various components of the position servo-control chain and characterize the performance of this servo-control.
- Propose a behavior model for the various components of the flywheel orientation speed servo system, and characterize the performance of this servo system.

Activity 4 : Corrector

Select a corrector based on the open-loop behavior of the gyroscope orientation.

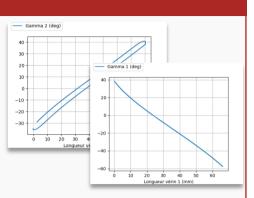
Activity 5 : Modeling mechanical actions

Determine the heel of the boat as a function of the position of the overload in order to deduce the equilibrium orientation of the assembly.

Activity 6 : Kinetics

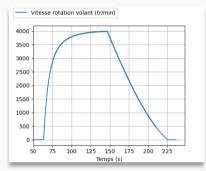
Determine the equivalent inertia of the power train associated with the flywheel speed.

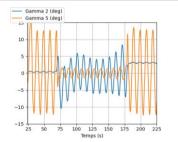
Activity 7 : Energetics

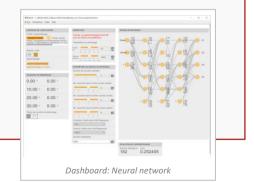

Describe the flywheel start-up process to minimize energy consumption (limited on a boat).

Activity 8 : Dynamics, gyroscopic torque

Study the gyroscopic effect: determine the relationship between the rotation speed of the flywheel frame and the dynamic behavior of the boat.


Activity 9 : AI - Energy optimization of flywheel start-up


• To address the problem of the availability of electrical energy on board a boat: implement an artificial intelligence numerical solution to determine the most energy-efficient flywheel start-up procedure.



Block diagram of the overload position servo system used to impose roll on the boat

Temporal evolution of the boat's forced heel (blue) and gyro frame inclination (red)

